RELATED RATES AND MAXIMUM AND MINIMUM VALUES

Math 130 - Essentials of Calculus

4 November 2019

WARM-UP

EXAMPLE

Assume that x and y are functions of t. If $y = x^3 + 2x$ and $\frac{dx}{dt} = 5$, find $\frac{dy}{dt}$ when x = 2.

More Than One Dynamic Quantity

EXAMPLE

Two cars start moving from the same point. One travels south at 60mi/hr and the other travels west at 25mi/hr. At what rate is the distance between the cars increasing two hours later?

MULTIPLE RELATIONS

Gravel is being dumped from a conveyor belt at a rate of $30 ft^3 / min$, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 10 ft high?

RELATED RATES AND MAXIMUM AND MINIMUM VALUES

Math 130 - Essentials of Calculus

4 November 2019

DEFINITION

Let c be a number in the domain of a function f. Then f(c) is the

• absolute maximum value of f on the domain if $f(c) \ge f(x)$ for all x in the domain.

DEFINITION

Let c be a number in the domain of a function f. Then f(c) is the

- absolute maximum value of f on the domain if $f(c) \ge f(x)$ for all x in the domain.
- absolute minimum value of f on the domain if $f(c) \le f(x)$ for all x in the domain.

DEFINITION

Let c be a number in the domain of a function f. Then f(c) is the

- absolute maximum value of f on the domain if $f(c) \ge f(x)$ for all x in the domain.
- absolute minimum value of f on the domain if $f(c) \le f(x)$ for all x in the domain.

These values are also called the extreme values of f.

DEFINITION

Let c be a number in the domain of a function f. Then f(c) is the

- absolute maximum value of f on the domain if $f(c) \ge f(x)$ for all x in the domain.
- absolute minimum value of f on the domain if $f(c) \le f(x)$ for all x in the domain.

These values are also called the extreme values of f.

A function often has values that behave like maximum and minimum values if you only look at nearby input values. These are called local extrema.

DEFINITION

The number f(c) is a

• local maximum value of f if $f(c) \ge f(x)$ when x is near c.

DEFINITION

Let c be a number in the domain of a function f. Then f(c) is the

- absolute maximum value of f on the domain if $f(c) \ge f(x)$ for all x in the domain.
- absolute minimum value of f on the domain if $f(c) \le f(x)$ for all x in the domain.

These values are also called the extreme values of f.

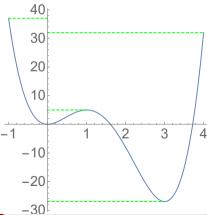
A function often has values that behave like maximum and minimum values if you only look at nearby input values. These are called local extrema.

DEFINITION

The number f(c) is a

- local maximum value of f if $f(c) \ge f(x)$ when x is near c.
- local minimum value of f if $f(c) \le f(x)$ when x is near c.

Consider the function $f(x) = 3x^4 - 16x^3 + 18x^2$ on the domain $-1 \le x \le 4$. Where are the absolute maximum and absolute minimum values, and what are they? Are there any local minimum and local maximum values?



Extrema of a Function

Whether or not a function has absolute/local extrema depends on the function AND the domain you look at it on.

Whether or not a function has absolute/local extrema depends on the function AND the domain you look at it on.

EXAMPLE

① Considered on the domain $(-\infty, \infty)$, $f(x) = x^2$ has an absolute minimum, but nothing else.

Whether or not a function has absolute/local extrema depends on the function AND the domain you look at it on.

EXAMPLE

- Considered on the domain $(-\infty, \infty)$, $f(x) = x^2$ has an absolute minimum, but nothing else.
- ② Considered on the domain $(-\infty, \infty)$, $f(x) = x^3$ has no extrema at all!

Whether or not a function has absolute/local extrema depends on the function AND the domain you look at it on.

EXAMPLE

- Considered on the domain $(-\infty, \infty)$, $f(x) = x^2$ has an absolute minimum, but nothing else.
- ② Considered on the domain $(-\infty, \infty)$, $f(x) = x^3$ has no extrema at all!

It turns out that if you consider a continuous function on a closed interval, of the form [a, b], you're guaranteed an absolute maximum and minimum.

THEOREM (THE EXTREME VALUE THEOREM)

If f is continuous on a closed interval, then it always attains an absolute maximum value and an absolute minimum value on that interval.

LOCATING EXTREME VALUES

Observing some of the pictures we've had so far, the following theorem is apparent:

THEOREM (FERMAT'S THEOREM)

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

LOCATING EXTREME VALUES

Observing some of the pictures we've had so far, the following theorem is apparent:

THEOREM (FERMAT'S THEOREM)

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

It's possible that a function could have a local extrema at a place where $f'(c) \neq 0$, for example, consider f(x) = |x|.

LOCATING EXTREME VALUES

Observing some of the pictures we've had so far, the following theorem is apparent:

THEOREM (FERMAT'S THEOREM)

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

It's possible that a function could have a local extrema at a place where $f'(c) \neq 0$, for example, consider f(x) = |x|. It turns out that what we're really looking for are *critical numbers*.

DEFINITION (CRITICAL NUMBER)

A critical number of a function f is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist.